Children borm to mothers with HV infection are defined as seroreverters (SRs) and are
considered uninfected with HVVifthey
considered uninfected with HVVifthe,
A. Become HIV-antibody negative after 6 months of age,
B. Have no other laboratory vidence of HVVinfection and

Have not met the AIDS surveillance case definition criteria. (See below, NACO
Diagnosis of HVV infected children over 18 months may be made by antibody test (ELISA and confirmatory tests)
Specific diagnosis in children less than $15-18$ months can be made by virologic tests - HIV DNA polymerase chain reaction (PCR)

- HIVRNAAssa
- Viral culture

Tests should be performed at: 48 hours of age, 14 days, $1-2$ months, $3-6$ months, Cord
blood should beexcluded
DIAGNOSIS OF HUMAN IMMUNODEFICIENCY VIRUS (HIV) INFECTION IN CHILDREN

DIAGNOSIS: HIV INFECTED

A. A child <18 months of age who is known to be HIV seropositive or born to an HIV-
infected mother and:

- has positive results on two separate determinations (excluding cord blood) from -- HIV culture,
- HIV polymerase chain reaction
-- HIV antigen (p24), or
meets criteria for accuired immunodeficiency syndrome (AIDS) diagnosis based on the
NACO guidelines, October 1999 g. Acidilines, October 1999
B. Achild 18 months of age born to an HIV-infected mother or any child infected by blood,
blood products, or otherknown modes of transmission who: - is HIV-antibody positive by repeatedly reactive enzyme
- and confirmatory test (e.g., Western blot or immunofluorescence assay (IFA) meets any of the criteriain (A) DIAGNOSIS: PERINATALLY EX
Achild who does not meet the criteria above and who:
- is HiV seropositive by EIA and confirmatory test (e. .g, Western blot or IFA) and is <18

DIAGNOSIS: SEROREVERTER (SR)

Achild who is born to an HIV-infected mother and who:

- Has been documented as HIV-antibody negative (i.e., two or more negative EIA tests
performed at $6-18$ months ofage or one negative EIAtestater 18 month of age) and
- Has had no other laboratory evidence of infection (has not had two positive viral
deteciontest, iperformeen and

- Has nothad an AIDS-defining condition.
Dr. Reena Nakra
Consultant Patho

NACO GUIDLINS -CASE DEFINTON FORADS INIDAA (OTote
(October 1999)
CASE DEFINITION OF AIDS IN CHILDREN (upto 12 years of age)
The positive tests for HIV infection by ERS test (ELISARAPID/SIMPLE) in children
2. confirmed maternal HI
2. confirmed maternal HVV infection for children less than 18 months. and

Presence of at least two major and two minor signs in the absence ofknown causes of immuno-suppre
MAJOR SIGNS:
Loss of weight or failure to thrive which is not known to be due to medical causes other
than HIV infection.
B. Chronic diarrhea (intermittent or continuous) >1 month duration.
C. Prolonged fever (intermittent or continuous) >1 month duration. MINOR SIGNS:
A. Repeat common infections (e.g. Pneunonitis, ottitis, pharyngitis etc.)
B. Generalised lymphadenopathy
C. Oropharyngeal candidiasis
D. Persistent cough for more than 1 month
E. Disseminated maculo - papular dermatosis

CASE DEFINITION OF AIDS IN ADULTS (fior persons above 12 years of age)
Two positive tests for HVV infection by ERS test (ELISARAPID/IIMPLE) and
2. Any one of the following criteria:
A. Signiifiant weight loss ($>10 \%$ of body weight) within last one month/Cachexia (not
known to be due to a condition other than HiV infection) and Chronic diarnea known to be due to a condition other than HIV infection) and Chronic diarnhea
(internittent or continuuus) >1 month duration or prolonged fever (nintermittent or
continuous >1 monthduration
continuous) >1 month duration
B. Tuberculosis: Extensive pulmonary, disseminated, miliary, extra-pulmonary
tuberculosis.
C. Neurological impairment preventing independent daily ac
D. Candidasis of the oessophagus (diagnosable by oral candidiasis with odynophagia)
E. Clinically diagnosed life -threatening or recurrent episodes of pneumonia, with or
without etiological confirmation
F. Kaposi Sarcoma
G. Other conditions:-

- Cryptococcal
- Neuro Toxopplasmasis - Disseminated molluscum
- RecurrentHerpes Zoster or

FROM THE EDITOR'S DESK
It is my proud privilege and honor to bring out this issue as the new
chief editior of this esteemed newsiteter. It will be my andeavor to heep up the trend of providing best tquality information in the field of liagnostics and their application in clinical diagnosis and

As we prepare to celebrate the commensuration of another year,
the relentiess spread of HIVIAIDS in its third decade reminds us of

 Path Labs joins in to galvanize the support necessary io trea approved automated real time PCR assay. LPL Lthus brings down the HIV viral load testing costs
by $30-40 \%$ less than the existing tests making it accessible for disease monitoring to wider patient strata.
With more than 20 antiretroviral drugs available, the level of virus in an infected person can be
reduceds so that he or she cean maintain health for many years and also prevent mother to tinfant reduced so that he or she can maintain health for many years and also prevent mother to infant
transmission of HVV. Baseline measurements of HIV viral load after a few months of
 viral load help physicians deciain when tifect of treatment is being lost and therapy must be
failure of therapy and ascertain when effer atiure of
changed.
Chinged. issue will focus on providing an insight into this powerful predictor of risk of disease
progression and an important adiunct tot treatment. Prof. Pradeep Seth. Consultant: Research progression anc an important aadnce extieaty
and Academics, Dr Lal Path Labs, explictly details HIV virus load testing in his article. With greatpoaemusure and honour we ealaso expe the this oppoportunity to congratuluate him on being conferred
the HIV diagnostic testing has come a long way sinceitis inception and keeping our focus on HIV in
this issue, a brief review of the significance of these tests and their interperetaiton is also this issue, a briew review of the significance of these
discussed along with guidelines for HVV testing in chidren.
In sync w with the LPL vision, a workshop on sample colle ction for newborn screening and tests for
inborm errors of metabolism was organized to teduce preanalytic errors and ensure good duality specimens and this received an overwhelming response.
This quarter also saw LPL Launch consumer initititives on the occasion of World Heart Day with
the Healthy Heart Campaign and followeditup with he ongoing Diabetes Control Program. We would welcome your valuable suggestions, queries and ideas to tolp us serve you better. We look forward to your participation and wish all our readers and well wishers a happy and
successfulu new year 2008ahead. Dr. REENANAKRA,
Chiefeditor,
Chief of Lab \& Consultant Pathologist,
LPLNOIDA
E-mail: reena.nakra@lalpathlabs.com

覚 Dr Lal PathLabs VNM

HIV Virus Load by Real-Time PCR (RT PCR) Assay

Background: Progressive HIV infection causes an increase in plasma HIV-RNA levels accompanied by a corresponding decline in $\mathrm{CD} 4+\mathrm{T}$ cell count. Absolute $\mathrm{CD} 4+\mathrm{T}$ cell count has been used as a

 studies have shown
Development of new moleculur techiques designed to detect ctirculating virion- associated HIV RNA in plasma has created an opportunity to study viral dynamics and H HV pathogenesis in substantial
detail. Of the three quantitation assays namely Real-time Reverse-transcriptase Poilymerase Chain Reaction Real-time RTTPCR) detail. Of the three quantitition assays namely. Real-time Reverse-transcriptase Polymerase Chain Reaction (Real-time $R T$ T.PCR) assay, Branched DNA assay and Nucleic Acid Sequence-based
amplification assay Real Time RT-PCR being a kinetic assay provides better quantification of the intial copy numbers than end-point measurements employed by the other assays. The dynamic range of amplification assay Real Time RT.PCR being a kinetic assay provides better quantification of the initial copy numbers than end-point measurements en
Real-time PCR is a powerful advancement of the basic P PCR technique. The oldder PCR technique is essentially qualitative in which the end point amplification products are visualized on gel-electrophoressis in apost-PCR processing step. This step is amaio source of cross- contamination and false positive results. Moreover, conventional or basic PCR is only able to detect the 10 ofold changes inthe endpoint
amplified product, thus increasing the chances of afalse positive result. Italso has a low sensitivity of detecting only 500 copies of the target nuclecic acid in the sample. On the other hand, Real-Time PCR is amplified product.t thus increasing the chances of faflse positive result. It Itso has alow sensitivity of detecting only 500 copies of the target nucleic acid in the sample. On the other hand, Real-Time PCRI in conjunction with proper instrumentation, all il inportant starting amount of nucleic acid in the reaction can be accurately quantitited. Quantitation is a achieved by measuring an increase in fluorescence
during the exponential phase of PCR. 1 It s abl to dotect even two fold changes in the concentration of the product. The estis performed in a single tube and no post-PCR processing step is required to detect

 detection.

The new dynamic range of this test delivers standard of care sensitivity (50 cop ies $/ \mathrm{mL}$) and quantitation between 48 copies and $10,000,000$ copies

The HIV plasma viral load (PVL) has proved to be powerful predictor of risk for disease progression. In
pregnant HIV infected women PVL predicts risk of

Figure 1: Four Phases of PCR: 1st phase: Initial exponential amplification hidden
under background fluorescence; 2nd phase:Exponential amplification (Area where under background fluorescence; 2nd phase:Exponential amplification (Area where where conventional PCR productis identified)
TaqMan@Probe Chemistry
The Taqman® probe is an oligonucleotide probe labeled with fluorescent dye on the 5 '
end and quencher on the 3 ' end. The close proximity of the dye and quencher results in end and quencher on the 3 ' end. The close proximity of the dye and duencher results in nuclease activity of the enzyme, Traq DNA Apolymerase, , leavesesthe probe, separating the
dye and quencher, which allows detection of fluorescence. The fluorescent intensity dye and quencher, which allows detection of fluorescence. The fluorescent intensity
ncreases proportionally as PCR product accumulates. Since specific hybridizaion of probe with targot sequence must occuurt og acenerate fluorescencence, non-specific products and primer-dideres will on affect the fulurescents signal. Furthermore, by labeling multiple probes with different dyes, multiplex reactions can be done.
The TaqMan 5'nuclease chemistry (see below) is considered the gold standard in
rigure. Schematic representations of real-time PCR: Schematic representation of ransferred (via RRET) trom the short-wavelength fluorophore on one end (green circle)
to the long-wavelength fluorophore on the other end (red circle). quenching the short-

 fluorescence is detected. The flurescence intensity increases proportionally as PCR
products accumulate during amplification reaction.
Figure: Quantitation of HIV-1 Plasma Virus Load by Real-time PCR with Taqman probe
chemistry: Virus RNA was extracted from plasma o HHV-1 infected individuals and cDNA was produced using reverse transcriptase. cDNA was processed for quantitition by
Real Time PCR. A. presents the amplification profile of each sample. The samples with higher virus load show exponenential amplification in earrier cyles of amplification. B shows calculation of plasma virus load with the standard curve

-
 ros

thetochidtrisision plo

When feasible, th
individual patient
Plasma viral load serves as an invaluable marker for monitoring the progression of HIV infection and the efficacy of antiretroviral therapy in HVV infected patients. Despite obvious
importance of HIV RNAlvels in disease prognosis, minimum information is available on viral set points from developing countries ilie India. A major hurdle faced in the developing
counties is the non-availability of costeefective assay for the measurement of plasma HV countries is the non-availability of cost-effective assay for the measurement of plasma HIV RNA levels. Moreover, the available costly commericil assays for viral load testing that are
used in clincal settings were initilly designed primarily to assess
HVV-1
subtype infection. Although some of these assays have been improved in terms of sensitivity and specificity for the detection of non-B subbtypes of HV-1., there are reports of discordant viral lood results with
non-B subtyoes paticularly subtye C. Measurement of HV reverse transcriptase enzyme non-S subtypes particiculary subtype C. Measurement of HV reverrse transcriptase enzzyme
activity or 24 antigen levels by certain commercial kits provides alterative low cost means to quantitiate viral loads. However, the sensitivity of such assays remains a major concern for the routine use of these kits for patient monitoring. Also.itis recommended that the same assay be
used for periodic monitoring a multiple time points for individual patient due to the inter-assay

Since in India subtype C is the predominant circulating HIV-1 clade accounting for more than
90% infections, we at Dr. Lal Pathlabs Pvt. Ltd. conceptualised development of a sensitive, 90% infections, we at Dr. Lal Pathlabs Pvt. Ltad. conceptualised development of a sensitive,
specificic, reproducible and affordable assay based on Real-time Reverse Transcritase. specific, reproducible and affordable assay based on Real-time Reverse Transcriptase-
Polymerase Chain Reaction technique (RT-PCR) for quantification of plasma HVV-1 RNA
levels in patients with HlV infection The real-time PCR technologymeasures accumulaion of levels in patients with HIV infection. The real-time PCR Rechnology measures accumulation of
PCR product in real-time providing better quantification of the initial copy numbers with a PCR product in real-time provididng better quantifictation of the initial copy numbers with a
dyyamic range of detection. Wedesigned and developed atowoube enthod in wich one tube
is
 Taqman probe contributes in measuring reporter dye emissions accurateley with almost 100%
specificity and sensitivity since it has already been reported thata s single mismatch can lead to specifictit and sensititity since it has a aready been reported thata single mismatch can lead to
reduced amplification efficiencies resulting in decreased viral load measurements. Our assay is highty specific as all HlV-1 negative healthy donor samples failed to show any positive fluorescent signal. II addition the assay has a very high sensitivity and it can detect 30 g .
eq.
I lof liv RNA. The standard curve showed linearity high coefficient of correlation indicating its high sensitivity in determining viral loads over a
broad range. high coefilicie.
broad range.

Uniqueness of this test resides in

- It quantitied almost all subtypes of HV-1 including HIV-1 subtype 0 , particularly
subtype Cand subtype ;
- False positive results have been reduced to negligible evels;
- False negative results due to inhibition of amplification reaction or due to inappropriate extraction procedure have been avoided completely by incl
which is added to the sample and is coextracted with he virus;
- Quantitation standards are used with every run for quantitition. The dynamic range of treated and untreated patients with HiV infection.
Above all the reports are available within 24 hours of the receiptof the sample.

Most Common Reasons for Ordering Plasma Viral Load Test

- Indeterminate HIV antibody testin a patient a thigh risk for HVV infection
- Initial evaluation ofnewly diagnosed HIV infection
- Surveillance of patients who are notreceiving antiretroviral drug therapy
- Before initiation or change of antiretroviral drug therap
- Monthly after initiation of antiretroviral drug therapy and every 1 to 3 months until therapeutic goal is attained

Prof. Pradeep Seth,
[Indigenous development of of automated HIV virus load test $\boldsymbol{\Pi}$ using the USFDA approved automated real time PCR assay by
Dr Lal Path Labs brings down HIV viral load testing costs by
30-40\%

LABORATORY Tests for HIV/AIDS
HIV diagnostic testing has come a long way since its inception in the early 1980 s.

- Curent enzyme immunoassays (EIA) are sensitive enough to detect antibody as early
- To confirm positive antibody screens (Western blot, polymerase chain reaction [PCR],
- Provide an adjunctto antibody testing (p24 antigen, PCR), or
- Provide additional information for the cliniciaan treating HIV-positive patients
(qualitative and uuantitative PCR, and genotyying). (qualitative and quantitative $P C R$, and genotyping).
Abrief review of the significance of these tests and their interpretation is discussed.
ELISA
 HIV-1 and HIV-2 in serum or plasma. The
prouction of HIV specific antibodies after
exposure to the vins exposure to the virus takes about 612 weeks
(seroconversion). The period between infection (seroconversion). The period between infection
and seroconversion is called the window period.
During this period ELISA for HV antitodies is and serocoonversion is called the window period.
During this period ELISA for HIV antibodies is
neagaive The window period negative 3 .The window period usually does not exceed 3
Detection of HV-1 antibodies s sthe most common
and effifient method of determining whether a

and eficieient method of determining whether
individual has been infected with the virus
Currenty arailebe ind
Currently available enzyme immunoassays (EIAs) have analytical sensitivities and
specificities thatexceed 99%. INTERPRETATION
Non Reactive: Implies that no HIV -1 or HV -2 antibodies have been detected in the sample by Non Reactive: Implies that no HVV-1 or HIV-2 antibodies have been detected in the sample by
this method. This means that either the patient has not been exposed to HIV-1 or HVV-2
infection or the sample has been tested durining the window phase. Provisionally Reactive/Borderline Reactive: Suggestst the possibility of HIV-1 andlor HIV-
2 infection. The reactive EIA result should be validted by
 False Positive reactions: 1. High levels of IGM antibodies, 2. Anti HLLAABC and DR
antibodies, 3 . Attack of FIu, 4. Hepatitis Bvaccination, 5 . Repeated freezing and thawing of the sample, . Multigravida women, 7. Presence of Rheumatoid factor, 8. Alcoholism,
9.Malignancy 9. Malignancy

False Negative Reactions: 1. Window Period, 2. Advanced AIDS disease - diminished
antibody titre, , When the patientis ismunosuppessed. WESTERNBLOT(WB)
Western blot or IImmunoblot is used to valiate the results of repeatedy reactive EIA. II also
identifies the antibodies directed dagainst specific HVV-1 \&/r HlV-2 antigens. It has a lowe identifies the antibodies directed against specific HIV-1 Slor HlV-2 antigens. It has a lower
positive predictive value when performed alone. The Western blot is interreted as positive
 assay strip. (See below"Interpretation)
The Western Blot analysis is currently the standard method for confirming HIV seropositivity. HIV proteins are separated according to their molecular weight by polyacrlamide ge
electrophoresisis and thentransferred on to a a itrocecllulose membrane. The antibodies present
 INTERPRETATION
The recommended WHO criteria for interpreting Western Blotresults are as follows:

[^0]- Anincomplete antibody response in sera of infected personso
- Nonspecific reactions in sera from uninfected persons.

NEGATIVE: No viral specific bands presentis termed as Negative.

HIV-2 CRITERIA

NEGATIVE: Specific band for HIV-2 absent.
False Negative Results:

1. Recent infection with HIV in the process of seroconversion
2. End Stage HIVdisease
3. Perinatally exposed infants who are seroconverting i.e.losing maternal antibody
4. Pregnantwomen

Note:: All these causes lead to incomplete antibody response which makes the result
Indeterminate or Negative. Indeterminate or Negative.
False Positive Results: Contamination of viral antiten reference bands by histo-
compatibility and other antigens during kit prepearation. Uninfected infant bom to HVV positive compatibility and other antigens during kit preparation. U
mother
P 24 Antigen Detection: This test predicts the probability of disease progression. In
seroconversion illess the test may be positive even hefore
 23 weeks after HIV infection for the antigens tof first appear and remain detectable upto 5
months postinfection. Thus antigen testing is strongly recommended for early detection of HIV months post infection. Thus antigent testing is strongly recommended for early detection of HIV
infections in persons at risk. After seroconversion i.e. when HIV antibodies develop which
 blood disappear as they form immune complexes with the antibodies. The
antign is an unfavourable prognostic sign for the developmentof IIDS.
Uses: 1 . Used for early detection of HIV cases before seroconversion, 2 . Used as an aid in the
 born to HIV Vifected mothers, 4 . Used in the detection of HVV viral antigens on virus isolation in tissue cultures
HIV-1 DNA PCR: PCR is particulary useful in testing infants of HIV-positive mothers; these
infants may carry maternal antibody to 15 months of age. It sis also usefulu wententesting patients Who are agammaglobulinemic or in rare cases where patients appear to have symptoms of advanced HVV iffection butdo not demonstrate HIV-specific antibodies,
HIV Viral Load Monitoring: Aside from diagnostic HIV testing, LPL also offers quantititive
PCR (RNA) testing (See HV Vivius load by RT-PCR assay), which is used to help determine the PCC (RNA) testing (See HIV Virus load by RTPCCR assay), which
inititation of drug therapy and monitor the effectiveness of therapy.
HIV Genotyping: HIV genotyping is a newer adjunct to patient management and is used to
assist in tracking the development of drug resistance and guide the modificaion of antiretroviral drug selection.
Clinical Use: This testis used to detect HIV-1 mutations in the reverse transcriptase (RT) and

 viral suppression than when therappy selection is based on standard of care, particularly when expert consultation is available
Other laboratory tests for monitoring HIV infection/ AIDS: 1. Routine Haematology and
Bichemistry 2. Total CD4 Count, 3. Total CD8 count, 4. CD $4 / C D 8$ Ratio, 5. Beta 2 Biochenimisty, 2. Totala CD4
Microglobulin, 6 . Neopterin
These tests are recommended for the follow up of drug therapy and to rule out druy toxicity. These tests are recommended or the follow up of drug therapy and to rule out drug toxicity.
Many Hiv infected persons have cytopenias and the incidence increases with the use of Nany Hiv infected persons have cylopenias and the inciidence increases win the use of
concomitant drugs. Some patients develop rapidly progressing pancreatitis. Hence routine
screening is ssential. screening is essential
Total CD4 Count
Total CD4 Coun
The most widely used prognostic marker has
been the absolute C DP 4 I Iymphocyte count been the absolute CD4+ lymphocyte count.
In general, as counts decrease, the risk of opportuninsticic ifection inicreases. . However,
there is sustantial diurnal variation (counts there is substantial diurnal variation (counts
are generally loweri ithe morning), \&counts
 illess. The trend in counts is more important
than any single value. The frequency of than any single value. The frequency of
performance of counts depends on the

patient's health status. Patients early in the course of infection should have counts performed every 3 months. CD4 cell counts are the best immediate or short-term predictor of the risk of developing a new opportunistic infection. The percentage of $C D 4+$ lymphocytes is a more
reiliobel indicator of prognosis than the absolute counts because the percentage does not depend on calculating a manual differential.
BETA 2 MICROGLOBULIN
${ }^{\beta} 2$-Microglobulin, a markerf for microphage and monocyte stimulation, is a cell-surface protein whose concentration increases at the time of HV serococnversion and continues to tise with
progression of disease. The test is not very useful; CD4 cell counts and viral load assays are stronger rogonostic and therapeutic markers.

NEOPTERIN

Role in HIV: This is a marker of macrophage and T cell activation. This test also predicts
probabiilty of disease procression but he test has not been established as having additiona probability of disease progression but the test has not been established as having additiona
value compared with total CD4 counts. High levels correlate with progression of the disease and the levels fall after therapy. Levels of feepterin can be measured in serum or urine, Elevated serum levels may indiciate HIV infection in children with indeterminate status. LABORATORYTESTS FOR HIV-1 INFECTION

Test	Significance
HIV, EIA	Screening test for HIV infection. Sensitivity>99.9\%. Reactive results must be confirmed with Western blot.
	Confirmatory test for HIVELISA. Specificity when combined with ELISA>99.9\%. Indeterminate results seen with early HIV infection, autoimmune disease, pregnancy, and recent tetanus toxoid administration.
Absolute CD4 lymphocyte count	Most widely used predictor of HIV progression. Risk of progression is high with $\mathrm{CD} 4<200$ cells/L. Best short-term predictor for development of opportunistic infections.
CD4 lymphocyte percentage	Useful in conjunction with CD4 count. Risk of progression is high with percentage $<20 \%$.
B2-Microglobulin	Cell surface protein indicative of macrophage-monocyte stimulation. Levels $>3.5 \mathrm{mg} / \mathrm{dL}$ associated with rapid progression of disease. Limited usefulness,
HIV RNA quantitative (viralload)	Most useful fests for determining prognosis PCR and monitoring therapy; can assist in drug selection prior to initial treatmenffor following therapeuticfailure
HIV genotypying	Useful for detection and assessment of resistance to antiretroviral therapy; can assist in drug selection
	Dr. Paraminder Kaur, Head Quality Systems, LPL

DIAGNOSING HIV INFECTION IN CHILDREN

Diagnosis of HIV infection in children born to HV-infected mothers is complicated by the presence children are HV-antibody positive at bith athough only 15% - 30% are actual all these chidrren are HIV-antibody positive at birth, although only $15 \%-3 \% \%$ are actual
infected. In uninfected chidren, this antibody usually becomes undetectable by 9 months of age but occasionally remains detectable untiti 11 months of age. Thereforerestandard anti-HI
1 GG antibody tests should not be used to indicate reliably a chid's infection stat b lgG antitiody tests should not be used to ondicate reliably a child's infection status before 1
month of age. Polymerase chain reaction (PCR) and virus culture are probably the mos sensitive and specific assays for detecting HIV infection in children borm to infected mother Isolation of HIV, though a gold standard, is highly infectious, labour intensive and time consuming procedure that requires special biological containment laboratory facility and
highly skilled expertise and is conducted by bew faboratories in India On the other hand PCR is safe and provides results within 24 hours of receipt of sample. It is used as an alternative gold standard to confirm the diagnosis of H HV Vifection. PCR can identify approximately 30% 50% of infected infants atb bith and nearly 100% of infected infants by 3 -6 months of age. The standard 224 -antigen assay is less sensitive than either virus culture or PCR, especially
when anti-HIV antibody levels are high, because it fails to detect inmune-complexed p24
 overall sensitivity ofthis assay is about 50 to 60%.

[^0]: HIV-1 CRITERIA
 POSITIVE: Presence of two envelope bands (gp160/120 and gp 41) with / or without pol (p51/p66//31) orgag bands ($\mathrm{p55/p24/p17} \mathrm{)} \mathrm{OR}$
 the presence of a teast one band from each gag, pol and envelope antigen
 A positive blot indicates infection with the virus but a diagnosis of AIDS can only be made
 clinicallyif the person meets the case definition of AlDs (See given NACO guidelines, Oct 1999).
 INDETERMINATE: Any band pattern which does not meet the criteria for positive is termed as Indeterminate. All such cases must repeat the test after 6 weeks. Indeterminate
 results can occurdue to

